Amazon
Worldwide Specialist Solutions Architect - GenAI, Amazon SageMaker
Amazon, Seattle, Washington, us, 98127
Description
Are you passionate about Artificial Intelligence, Machine Learning and Deep Learning? Are you passionate about helping customers build solutions leveraging the state-of-the-art AI/ML/DL tools on Amazon Web Service (AWS)? Come join us!
At Amazon, we’ve been investing deeply in artificial intelligence for over 20 years, and many of the capabilities customers experience in our products are driven by machine learning. Amazon.com’s recommendations engine is driven by machine learning (ML), as are the paths that optimize robotic picking routes in our fulfillment centers. Our supply chain, forecasting, and capacity planning are also informed by ML algorithms. Alexa is fueled by Natural Language Understanding and Automated Speech Recognition deep learning; as is Prime Air, and the computer vision technology in our new retail experience, Amazon Go. We have thousands of engineers at Amazon committed to machine learning and deep learning, and it’s a big part of our heritage.
Within AWS, we’re focused on bringing that knowledge and capability to customers through three layers of the AI stack: 1) Frameworks and Infrastructure with tools like Apache MxNet and TensorFlow, 2) Machine Learning Platforms such as Amazon SageMaker for data scientists, and, 3) API-driven Services like Amazon Lex, Amazon Polly, Amazon Transcribe, Amazon Comprehend, and Amazon Rekognition to quickly add intelligence to applications with a simple API call.
AWS is looking for a GenAI/ML Solutions Architect (GenAI/ML SA), who will be the Subject Matter Expert (SME) for helping customers worldwide design solutions that leverage our ML services. This role will specifically specialize in open source integrations and contributions that accelerate the development and delivery of generative AI solutions. As part of the team, you will work closely with customers to enable large-scale use cases, design ML pipelines, and drive the adoption of AWS for the AI/ML platforms. You will interact with other SAs in the field, providing guidance on their customer engagements, and you will develop white papers, blogs, reference implementations, and presentations to enable customers to fully leverage AI/ML on AWS. Additionally, as the voice of the customer, you will work closely with the service teams, and submit product feature requests to drive the platform forward.
You must have deep technical experience working with technologies related to artificial intelligence, specifically in advanced generative AI technologies. A strong mathematics and statistics background is preferred in addition to experience fine-tuning foundation models. You will be familiar with the ecosystem of software vendors in the AI/ML space, and will leverage this knowledge to help AWS customers in their selection process.
If you are a qualified and accepted candidate, you may work out of any of the following cities: Seattle, Denver, San Francisco, Silicon Valley, New York, Arlington. Travel up to 50% across the AMERICAs may be possible.
Key job responsibilities
Thought Leadership – Evangelize AWS ML services and share best practices through forums such as AWS blogs, white-papers, reference architectures and public-speaking events such as AWS Summit, AWS re:Invent, etc.
Partner with SAs, Sales, Business Development and the AI/ML Service teams to accelerate customer adoption and revenue attainment worldwide for Amazon SageMaker.
Act as a technical liaison between customers and the AWS SageMaker services teams to provide customer driven product improvement feedback.
Develop and support an AWS internal community of ML related subject matter experts worldwide.
About the team
Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.
We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness.
AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
Basic Qualifications
2+ years of design, implementation, or consulting in applications and infrastructures experience
4+ years of specific technology domain areas (e.g. software development, cloud computing, systems engineering, infrastructure, security, networking, data & analytics) experience
6+ years of IT development or implementation/consulting in the software or Internet industries experience
Preferred Qualifications
Experience working within software development or Internet-related industries
Experience migrating or transforming legacy customer solutions to the cloud
Experience working with AWS technologies from a dev/ops perspective
Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.
Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.
Our compensation reflects the cost of labor across several US geographic markets. The base pay for this position ranges from $118,200/year in our lowest geographic market up to $204,300/year in our highest geographic market. Pay is based on a number of factors including market location and may vary depending on job-related knowledge, skills, and experience. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, please visit https://www.aboutamazon.com/workplace/employee-benefits. This position will remain posted until filled. Applicants should apply via our internal or external career site.
Are you passionate about Artificial Intelligence, Machine Learning and Deep Learning? Are you passionate about helping customers build solutions leveraging the state-of-the-art AI/ML/DL tools on Amazon Web Service (AWS)? Come join us!
At Amazon, we’ve been investing deeply in artificial intelligence for over 20 years, and many of the capabilities customers experience in our products are driven by machine learning. Amazon.com’s recommendations engine is driven by machine learning (ML), as are the paths that optimize robotic picking routes in our fulfillment centers. Our supply chain, forecasting, and capacity planning are also informed by ML algorithms. Alexa is fueled by Natural Language Understanding and Automated Speech Recognition deep learning; as is Prime Air, and the computer vision technology in our new retail experience, Amazon Go. We have thousands of engineers at Amazon committed to machine learning and deep learning, and it’s a big part of our heritage.
Within AWS, we’re focused on bringing that knowledge and capability to customers through three layers of the AI stack: 1) Frameworks and Infrastructure with tools like Apache MxNet and TensorFlow, 2) Machine Learning Platforms such as Amazon SageMaker for data scientists, and, 3) API-driven Services like Amazon Lex, Amazon Polly, Amazon Transcribe, Amazon Comprehend, and Amazon Rekognition to quickly add intelligence to applications with a simple API call.
AWS is looking for a GenAI/ML Solutions Architect (GenAI/ML SA), who will be the Subject Matter Expert (SME) for helping customers worldwide design solutions that leverage our ML services. This role will specifically specialize in open source integrations and contributions that accelerate the development and delivery of generative AI solutions. As part of the team, you will work closely with customers to enable large-scale use cases, design ML pipelines, and drive the adoption of AWS for the AI/ML platforms. You will interact with other SAs in the field, providing guidance on their customer engagements, and you will develop white papers, blogs, reference implementations, and presentations to enable customers to fully leverage AI/ML on AWS. Additionally, as the voice of the customer, you will work closely with the service teams, and submit product feature requests to drive the platform forward.
You must have deep technical experience working with technologies related to artificial intelligence, specifically in advanced generative AI technologies. A strong mathematics and statistics background is preferred in addition to experience fine-tuning foundation models. You will be familiar with the ecosystem of software vendors in the AI/ML space, and will leverage this knowledge to help AWS customers in their selection process.
If you are a qualified and accepted candidate, you may work out of any of the following cities: Seattle, Denver, San Francisco, Silicon Valley, New York, Arlington. Travel up to 50% across the AMERICAs may be possible.
Key job responsibilities
Thought Leadership – Evangelize AWS ML services and share best practices through forums such as AWS blogs, white-papers, reference architectures and public-speaking events such as AWS Summit, AWS re:Invent, etc.
Partner with SAs, Sales, Business Development and the AI/ML Service teams to accelerate customer adoption and revenue attainment worldwide for Amazon SageMaker.
Act as a technical liaison between customers and the AWS SageMaker services teams to provide customer driven product improvement feedback.
Develop and support an AWS internal community of ML related subject matter experts worldwide.
About the team
Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.
We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness.
AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
Basic Qualifications
2+ years of design, implementation, or consulting in applications and infrastructures experience
4+ years of specific technology domain areas (e.g. software development, cloud computing, systems engineering, infrastructure, security, networking, data & analytics) experience
6+ years of IT development or implementation/consulting in the software or Internet industries experience
Preferred Qualifications
Experience working within software development or Internet-related industries
Experience migrating or transforming legacy customer solutions to the cloud
Experience working with AWS technologies from a dev/ops perspective
Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.
Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.
Our compensation reflects the cost of labor across several US geographic markets. The base pay for this position ranges from $118,200/year in our lowest geographic market up to $204,300/year in our highest geographic market. Pay is based on a number of factors including market location and may vary depending on job-related knowledge, skills, and experience. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, please visit https://www.aboutamazon.com/workplace/employee-benefits. This position will remain posted until filled. Applicants should apply via our internal or external career site.