Jobs via eFinancialCareers
Senior Machine Learning Engineer (Python, Spark, MLOPS, Cloud)
Jobs via eFinancialCareers, Normal, Illinois, United States, 61761
Senior Machine Learning Engineer (Python, Spark, MLOPS, Cloud)As a Capital One Machine Learning Engineer (MLE), you'll be part of an Agile team dedicated to productionizing machine learning applications and systems at scale. You'll participate in the detailed technical design, development, and implementation of machine learning applications using existing and emerging technology platforms. You'll focus on machine learning architectural design, develop and review model and application code, and ensure high availability and performance of our machine learning applications. You'll have the opportunity to continuously learn and apply the latest innovations and best practices in machine learning engineering.What you'll do in the role:
The MLE role overlaps with many disciplines, such as Ops, Modeling, and Data Engineering. In this role, you'll be expected to perform many ML engineering activities, including one or more of the following:Design, build, and/or deliver ML models and components that solve real-world business problems, while working in collaboration with the Product and Data Science teams.Inform your ML infrastructure decisions using your understanding of ML modeling techniques and issues, including choice of model, data, and feature selection, model training, hyperparameter tuning, dimensionality, bias/variance, and validation).Solve complex problems by writing and testing application code, developing and validating ML models, and automating tests and deployment.Collaborate as part of a cross-functional Agile team to create and enhance software that enables state-of-the-art big data and ML applications.Retrain, maintain, and monitor models in production.Leverage or build cloud-based architectures, technologies, and/or platforms to deliver optimized ML models at scale.Construct optimized data pipelines to feed ML models.Leverage continuous integration and continuous deployment best practices, including test automation and monitoring, to ensure successful deployment of ML models and application code.Ensure all code is well-managed to reduce vulnerabilities, models are well-governed from a risk perspective, and the ML follows best practices in Responsible and Explainable AI.Use programming languages like Python, Scala, or Java.Basic Qualifications:
Bachelor's degreeAt least 4 years of experience programming with Python, Scala, or Java (Internship experience does not apply)At least 3 years of experience designing and building data-intensive solutions using distributed computingAt least 2 years of on-the-job experience with an industry recognized ML frameworks (scikit-learn, PyTorch, Dask, Spark, or TensorFlow)At least 1 year of experience productionizing, monitoring, and maintaining modelsPreferred Qualifications:
1+ years of experience building, scaling, and optimizing ML systems1+ years of experience with data gathering and preparation for ML models2+ years of experience developing performant, resilient, and maintainable codeExperience developing and deploying ML solutions in a public cloud such as AWS, Azure, or Google Cloud PlatformMaster's or doctoral degree in computer science, electrical engineering, mathematics, or a similar field3+ years of experience with distributed file systems or multi-node database paradigmsContributed to open source ML softwareAuthored/co-authored a paper on a ML technique, model, or proof of concept3+ years of experience building production-ready data pipelines that feed ML modelsExperience designing, implementing, and scaling complex data pipelines for ML models and evaluating their performance
#J-18808-Ljbffr
The MLE role overlaps with many disciplines, such as Ops, Modeling, and Data Engineering. In this role, you'll be expected to perform many ML engineering activities, including one or more of the following:Design, build, and/or deliver ML models and components that solve real-world business problems, while working in collaboration with the Product and Data Science teams.Inform your ML infrastructure decisions using your understanding of ML modeling techniques and issues, including choice of model, data, and feature selection, model training, hyperparameter tuning, dimensionality, bias/variance, and validation).Solve complex problems by writing and testing application code, developing and validating ML models, and automating tests and deployment.Collaborate as part of a cross-functional Agile team to create and enhance software that enables state-of-the-art big data and ML applications.Retrain, maintain, and monitor models in production.Leverage or build cloud-based architectures, technologies, and/or platforms to deliver optimized ML models at scale.Construct optimized data pipelines to feed ML models.Leverage continuous integration and continuous deployment best practices, including test automation and monitoring, to ensure successful deployment of ML models and application code.Ensure all code is well-managed to reduce vulnerabilities, models are well-governed from a risk perspective, and the ML follows best practices in Responsible and Explainable AI.Use programming languages like Python, Scala, or Java.Basic Qualifications:
Bachelor's degreeAt least 4 years of experience programming with Python, Scala, or Java (Internship experience does not apply)At least 3 years of experience designing and building data-intensive solutions using distributed computingAt least 2 years of on-the-job experience with an industry recognized ML frameworks (scikit-learn, PyTorch, Dask, Spark, or TensorFlow)At least 1 year of experience productionizing, monitoring, and maintaining modelsPreferred Qualifications:
1+ years of experience building, scaling, and optimizing ML systems1+ years of experience with data gathering and preparation for ML models2+ years of experience developing performant, resilient, and maintainable codeExperience developing and deploying ML solutions in a public cloud such as AWS, Azure, or Google Cloud PlatformMaster's or doctoral degree in computer science, electrical engineering, mathematics, or a similar field3+ years of experience with distributed file systems or multi-node database paradigmsContributed to open source ML softwareAuthored/co-authored a paper on a ML technique, model, or proof of concept3+ years of experience building production-ready data pipelines that feed ML modelsExperience designing, implementing, and scaling complex data pipelines for ML models and evaluating their performance
#J-18808-Ljbffr